On conditional variance estimation in nonparametric regression

نویسندگان

  • Siddhartha Chib
  • Edward Greenberg
چکیده

In this paper we consider a nonparametric regression model in which the conditional variance function is assumed to vary smoothly with the predictor. We offer an easily implemented and fully Bayesian approach that involves the Markov chain Monte Carlo sampling of standard distributions. This method is based on a technique utilized by Kim, Shephard, and Chib (1998) for the stochastic volatility model. Although the (parametric or nonparametric) heteroskedastic regression and stochastic volatility models are quite different, they share the same structure as far as the estimation of the conditional variance function is concerned, a point that has been previously overlooked. Our method can be employed in the frequentist context and in Bayesian models more general than those considered in this paper. Illustrations of the method are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Polynomial Regression and Its Applicationsin

Nonparametric regression estimates a conditional expectation of a response given a predictor variable without requiring parametric assumptions about this conditional expectation. There are many methods of nonparametric regression including kernel estimation, smoothing splines, regression splines, and orthogonal series. Local regression ts parametric models locally by using kernel weights. Local...

متن کامل

Adaptive Nonparametric Regression with Conditional Heteroskedasticity

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance functions in a nonparametric regression model can be estimated adaptively based on the local profile likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihoo...

متن کامل

Nonparametric multivariate conditional distribution and quantile regression

In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...

متن کامل

Nonparametric variance function estimation with missing data

In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013